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1. Motivation and significance

Over the last two decades, the quantity of data available to scientists
has grown at an unprecedented scale [1]. High-resolution simulations,
observations from high-precision instruments and the huge amounts of
data from sensors and edge devices have propelled this expansion [2,3].
The availability of such amounts of data opened the floor to the
definition of more data-centric research paradigms besides more tradi-
tional compute-centric ones [4]. These changes had a disruptive impact
on scientific research, which is now essentially relying on software
technologies for taming the vast amount of data [5].

Together with new opportunities, Big Data brings forward multiple
challenges that the scientific software community needs to address
aiming to ensure efficient management throughout the entire data
lifecycle [6-8]. For instance, in the Earth Sciences context, which is
the main domain targeted by this work, the volumes of data available
from model simulations and reanalysis are nowadays in the order
of TeraBytes (i.e. output of a single simulation run), to PetaBytes
(i.e. data published large community experiments or historical reanal-
ysis datasets), heading towards ExaBytes in the near future (i.e. data
produced in very high-resolution climate projections) [9-12]. Besides
posing substantial technical challenges connected with the scale of such
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Fig. 1. Software architecture of the PyOphidia module, highlighting the interaction with the server-side infrastructure.

(big) data, climate datasets also need targeted software solutions able
to deal with domain-specific aspects such as, among others, scientific
data formats, legacy libraries and tools, controlled vocabularies and
metadata management [13].

The aforementioned requirements have led to the development of
the Ophidia Framework® in 2012, [14] and the PyOphidia Python
module a few years later. Ophidia is an open-source framework aimed
at providing High Performance Data Analytics (HPDA) capabilities for
scientific applications involving large-scale multi-dimensional scientific
data [15]. The framework has been primarily designed to address
climate and geosciences needs, although it is flexible enough to support
analysis of data from other scientific domains. The PyOphidia mod-
ule brings HPDA capabilities within the scientific Python ecosystem
through a high-level interface that allows handling distributed datasets,
running parallel analysis and interacting with High Performance Com-
puting (HPC) infrastructures.

The remainder of this paper is organized as follows: Section 2
presents the PyOphidia module, its architecture and capabilities, Sec-
tion 3 showcases a relevant usage example, while Section 4 reports on
the software impact and future work.

2. Software description

PyOphidia represents the Python bindings of the Ophidia frame-
work, and it aims to provide a high-level and programmatic interface
for data analytics at scale, while hiding the complexity of the underly-
ing infrastructure from scientists. It is not just an interface towards the
framework, but a powerful library for handling scientific data in the
form of datacubes, as well as managing workflow execution, enabling
parallel processing on HPC systems, and supporting integration with
well-known modules from the Python scientific ecosystem.

PyOphidia is an open source software, released under GPLv3 li-
cense’ and written entirely in Python, with the current version sup-
porting up to Python v3.11. The source code is available on GitHub,®
whereas the package can be retrieved from the Python Package Index
(i.e., Pypi)® and the Conda Forge channel on Anaconda.” The module
can be easily integrated with other scientific Python libraries such as
those supported by the Pangeo project [16].

2.1. Software architecture

The overall PyOphidia software architecture is explained in Fig. 1.
As it can be seen PyOphidia provides the client-side capabilities, usually
running on the scientist’s laptop, while the Ophidia Framework pro-
vides the server-side counterpart running on HPC or Cloud resources.
The library consists of two main Python classes:

3 Ophidia: https://ophidia.cmcc.it/

4 GNU General Public License v3: https://www.gnu.org/licenses/gpl-3.0.txt
5 PyOphidia at: https://github.com/OphidiaBigData/PyOphidia

¢ PyOphidia on Pypi: https://pypi.org/project/PyOphidia/

7 PyOphidia on Conda Forge: https://anaconda.org/conda-forge/pyophidia

» Client class: it provides the basic functions to submit any command
or workflow using a declarative query-like language offered by
the Ophidia front-end server. This class exploits a custom imple-
mentation of a web service (according to WS-I+ standard [17])
based on gSOAP over HTTPS to perform the client-server inter-
actions. By means of this client-server approach, the client class
allows users to execute data analytics operators or shell com-
mands on remote HPC and Cloud infrastructures. The connection
is secured via SSL/TLS;

Cube class: it implements the abstractions to handle scientific
datasets (i.e., multi-dimensional data) as Python datacube ob-
jects and HPDA operators as Python datacube methods. The
cube objects store the metadata and a reference towards the
actual data managed by the server-side components. Moreover,
the class implements a set of methods for materializing these
virtual datacubes into (client-side) Python objects containing the
whole data (according to the Ophidia data model [18]). The
cube class also provides methods for translating these objects into
common scientific Python formats, such as Xarray Datasets [19]
or Pandas Dataframes [20]. The cube class interface has been
designed to support HPDA tasks and deployment capabilities on
top of HPC infrastructures. This class exploits the client class for
the interaction with remote components, as shown in Fig. 1.

2.2. Data distribution and execution parallelism

The main goal of the PyOphidia library is to support HPDA on large
scientific datasets. To this end, the library provides the capabilities
for handling multi-dimensional data using the datacube abstraction
borrowed from the datawarehouse context, jointly with a set of On-Line
Analytical Processing (OLAP) operators. This abstraction is particularly
suited for scientific data as these are inherently multi-dimensional. The
Ophidia data model (widely discussed in [18]) implements the dat-
acube abstraction and strategies to split and partition data horizontally
into fragments across multiple computing nodes on the server-side. To-
wards enabling scalable analytics, the server-side components provide
parallel access and processing to the distributed fragments composing
a datacube.

From an implementation standpoint, Fig. 2 clarifies the key steps
needed to run a server-side parallel data analysis on a HPC infrastruc-
ture. In particular, the sequence of steps is:

1. Infrastructure deployment: as a first step, PyOphidia implements
the methods for firing up (i.e., deploying) the Ophidia comput-
ing components on the server-side (e.g., the nodes of a HPC
cluster);

2. Data access and loading: PyOphidia provides methods to load
data while specifying also the partitioning and distribution strat-
egy; more specifically: (i) the number of fragments the datacube
is split into and (ii) the number of nodes the fragments are
distributed over;
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Fig. 2. Main steps in a HPDA application implemented with PyOphidia for running remote parallel processing on a HPC infrastructure [WITH COLORS].

3. Parallel analytics: the library provides analytics interfaces that
allow defining the level of parallelism (i.e., number of processes
and threads per processes) over the partitioned datacubes;

4. Data transfer and visualization: if needed, data can be transferred
from the server-side running at the HPC center to the client
side for further post-processing and visualization tasks, by using
proper PyOphidia interfaces;

5. Infrastructure un-deployment: similarly to the first step, once the
processing is completed, a method for shutting down (i.e, un-
deploying) the Ophidia computing components on the server-
side, is provided.

The Ophidia Framework provides multiple levels of parallelism: at
datacube-level, i.e., multiple independent instances of the same operator
can be run concurrently on different datacubes (or files to load); and
at fragment level, i.e., a single operator is run in parallel exploiting a
hybrid multi-process/multi-thread approach on the different datacube
fragments. The interface of the parallel operators, and the related
methods in PyOphidia, have been designed to provide a high degree
of flexibility so that users or applications can tailor analytics execution
according to the workload. Fig. 2 shows a simplified view of the server-
side Ophidia Framework architecture; a detailed description can be
found in [15].

2.3. Software functionalities
PyOphidia provides a wide set of functionalities for handling and

processing large multi-dimensional datasets. The key methods imple-
mented by the libraries support:

connecting a remote Ophidia server instance and managing client—
server interactions, including user authentication/authorization
to the server side;

submission of analytics query with the Ophidia query-like lan-
guage, as well as complex workflows in JavaScript Object Nota-
tion (JSON) format (workflow format defined in [21]);

handling virtual multi-dimensional data in the form of datacubes.
To this end, the cube class supports the creation of datacube
objects linked to the remote server-side data. The object includes
a reference to the data via a unique identifier (called persis-
tent identifier - PID), together with all the metadata associated
with the remote datacube, such as the dimension, structure, size,
length of fields, etc.

operations on the data associated with the virtual cube objects.
All these operators allow the user to specify the level of par-
allelism required to run operations remotely on the server-side
infrastructure. The supported operations consist of:

- data loading and storing from scientific binary formats such
as NetCDF [22]. These methods provide the abstractions
for defining the structure of remote datacubes in terms
of partitioning and distribution on the server-side storage
nodes;

- statistical data reduction operations like average, max, min,
standard deviation, etc.;

- data subsetting on multiple dimensions;

— predicate evaluation;

— intercomparison and merging of multiple datacubes;

- execution of user defined functions (called primitives in
Ophidia);



Donatello Elia et al.

operations to handle datacube metadata and reorganize their
internal structure. Moreover, the software supports community-
based vocabularies like the Climate and Forecast Metadata Con-
ventions [23];

server-side interaction with remote HPC systems to (i) deploy and
un-deploy the computing components of the Ophidia Framework,
(i) run the operations on the remote cube objects, and (iii)
execute generic Python functions/scripts on the nodes;
materialization of remote datacubes on the client-side into ac-
tual Python data in the PyOphidia multi-dimensional format.
Moreover, the library provides methods for converting remote ob-
jects into client-side data in well-known scientific Python formats
(i.e., Pandas DataFrames and Xarray Datasets).

3. Illustrative example

This section presents a typical example of how to use PyOphidia for
the parallel computation of a climate indicator on a scientific dataset
and exploiting HPC resources. Additional examples of Python codes
and Jupyter Notebooks [24] based on PyOphidia can be found on the
module documentation page®.

Listing 1 shows how to compute the Tropical Nights extreme climate
indicator [25] with PyOphidia, which is defined as the annual count of
days where the daily minimum temperature is above 20 °C (or 293.15
K). In particular, the first statement (line 2) establishes the connection
towards the server front-end running on the remote HPC infrastructure.
It is noteworthy that all PyOphidia methods, except from line 14,
despite being executed locally, will be submitted to the front-end for
remote execution.

1 from PyOphidia.cube import Cube

> Cube.setclient (read_env=True)

3

4 Cube. cluster (action="deploy",host_partition="
test_partition",nhost=4)

6 myCubel = Cube.importnc(src_path="/tasmin—
ESM2_ssp585_r1ilpl1fl_gn_20900101 —21001231.nc",
measure="tasmin", imp_dim="time", description="Min
Temperatures", host_partition="test_partition",
nthreads=64)

¢ myCube2 = myCubel.apply(query="oph_predicate (measure, ’x
—293.157,’>0",’17,’0")", measure_type="auto",
nthreads=64)

10 myCube3 = myCube2.reduce2(operation="sum", dim="time",
concept_level="y", nthreads=64)

11

12 myCube4 = myCube3. subset(subset_dims="time",
subset_filter=1)

14 pythonData = myCube4.to_dataset ()

15

16 pythonData.tasmin. plot(cmap="Oranges", cbar_kwargs={"
label": "Tropical Nights count"}, figsize=(16,8))

18 Cube. cluster (action="undeploy",host_partition="
test_partition")

Listing 1: Example of Python code exploiting the PyOphidia module
for running the computation of a climate index in parallel over a large
dataset on a HPC infrastructure

Before running the actual analysis, the framework components are
deployed on 4 nodes of the HPC infrastructure (line 4); a similar

8 PyOhidia docs: https://pyophidia.readthedocs.io/en/latest/
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method can be used to un-deploy the components and release the
resources (line 18). These methods allow controlling the amount of
resources needed for the execution of the analysis without having
to directly log into the remote HPC infrastructure, as described in
Section 2.2.

Analytics operators can be then specified with the related method.
Each method allows the user to specify the overall level of parallelism
for the operator execution: in the case of this example, 64 threads
are used in total (defined through the nthreads argument), so that 16
parallel threads are running on each of the 4 nodes handling a portion
of the datacube fragments (i.e., using the fragment-level parallelism
explained in Section 2.2).

The data loading operator (i.e., importnc method) allows defining
data partitioning and distribution directly while data is read from
the file system: users can define the number of nodes that data is
distributed on (nhost parameter) and how the data is partitioned, by
defining the number of data fragments per node (nfrags parameter).
It is worth noting that users do not need to specify data partitioning
arguments as the framework implements heuristics to automatically
infer fragmentation according to the available resources and input data
structure. In this specific example, a CMCC dataset from the CMIP6
repository [26] containing the minimum daily temperatures is imported
in line 6: the resulting datacube is partitioned on the 4 nodes where
the Ophidia components were previously deployed (i.e., identified by
the test partition name). Since the number of hosts and the number of
fragments are not defined, the heuristics partition the datacube across
all the nodes associated with the test partition.

After the data is loaded on the HPC nodes, three parallel operators
are applied to (i) extract the number of days over the given threshold
293.15 K (line 8), (ii) count the days for each year in the datacube (line
10), and extract the results for the first year (line 12).

Finally, using the to_dataset method (line 14) the datacube content
can be transferred from the server-side infrastructure to the client-side
and converted into an Xarray Dataset. It should be noted that at this
stage the data being moved from the remote server to the notebook
is quite small (less than a MegaByte in this example). The results from
this command can be accessed directly within the Python script, locally,
for further processing and visualization (line 16). Fig. 3 shows a plot
with the result from the Tropical Night indicator produced with the
Xarray built-in plotting functions based on Matplotlib [27]. As it can
be argued, the methods for converting Ophidia datacubes into other
formats enable a seamless integration of PyOphidia HPDA features with
other scientific Python libraries.

4. Impact and conclusions

The PyOphidia module aims to address the challenges related to
the increasing volumes of scientific data by providing a high-level
solution tailored for parallel processing of multi-dimensional data. The
module provides the abstractions for handling data parallelism on
heterogeneous computing environments (both HPC and Cloud), trying
to hide the complexity of the underlying infrastructure, as shown in
Section 3. Extensive documentation, along with examples of usage
and video tutorials/materials, and a Docker container (hosting both
PyOphidia and the Ophidia software stack) targeting in particular
the Earth Science domain, have been made available online to help
scientists take advantage of the package’. Moreover, PyOphidia can be
used in conjunction with other Python modules and tools for interactive
analysis and visualization.

PyOphidia was released to the public in 2016. It has been improved
and supported by multiple developers ever since, and exploited by sev-
eral users throughout the years. The current version (v1.11) comprises

9 PyOphidia tutorials: https://pyophidia.readthedocs.io/en/latest/tutorial.
html
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Fig. 3. Color mesh plot showing the results of the Tropical Nights indicator computation. Figure produced using the built-in plotting functions from Xarray/Matplotlib [WITH

COLORS].

more than 5300 lines of codes with over 230 commits on the GitHub
repository.

The Python module has been used, jointly with the Ophidia server-
side components, in a wide set of applications, mainly related to climate
and geosciences [28-30] but also linked with biodiversity and smart
cities [31,32]. Other than being used by scientists on a daily basis, the
module has also been exploited in several applications developed in
the context of international and European projects. In particular, the
module is currently used in the European projects eFlows4HPC [33],
interTwin'® and ESiWACE Center of Excellence,'! and it is one of the
key components of the Data Space science gateway for the European
Network for Earth System Modelling (ENES) community [34].

Overall, the PyOphidia module enables greater productivity of sci-
entists, as they can focus more on the science part rather than the setup
of the system and the interaction with the infrastructure, and it supports
processing of parallel analytics for scientific datasets. PyOphidia capa-
bilities have therefore proven useful for effective knowledge extraction
on Big Data and, in turn, to support scientific discovery. Concerning
future work, the module will undergo continuous developments to
account for new requirements from the scientific community, support
direct integration with other well-known community libraries, and in-
crease the capabilities to handle complex and large workflows including
thousands of tasks.
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