SoftwareX 24 (2023) 101538

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original Software Publication

PyOphidia: A Python library for High Performance Data Analytics at scale

Check for
updates

Donatello Elia *, Cosimo Palazzo, Sandro Fiore', Alessandro D’Anca, Andrea Mariello?,

Giovanni Aloisio

Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, 73100, Lecce, Italy

ARTICLE INFO ABSTRACT

Dataset link: https://github.com/OphidiaBigDa
ta/PyOphidia

Keywords:

High Performance Data Analytics
Scientific datacube

Climate analytics

Data science

Python module

The increasing size of scientific datasets has caused a deep transformation in the way scientific research is
currently carried out. In multiple domains, Big Data challenges have called for novel software solutions capable
of exploiting fast computing resources, workflows technologies and parallel paradigms at scale, by providing a
high-level of abstraction while hiding, at the same time, the underlying infrastructural and software complexity
from scientists. This paper describes PyOphidia, an open-source Python module for High Performance Data
Analytics on multi-dimensional scientific datasets. PyOphidia aims to simplify the execution of parallel data
analysis over scientific datacubes on High Performance Computing infrastructures. It can be easily integrated
with other existing Python libraries and tools, within multiple data science environments.

Code metadata

Current code version

Permanent link to code/repository used for this code version
Permanent link to Reproducible Capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies

If available Link to developer documentation/manual
Support email for questions

vl.11
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00522

GPLv3

git

Python

Python v3.7.0+, xarray v2022.03.0+ (optional), pandas 1.2+ (optional), numpy
1.19+ (optional), a running Ophidia server instance v1.8; any OS supporting Python
https://pyophidia.readthedocs.io/en/latest/

ophidia-info@cmcc.it

1. Motivation and significance

Over the last two decades, the quantity of data available to scientists
has grown at an unprecedented scale [1]. High-resolution simulations,
observations from high-precision instruments and the huge amounts of
data from sensors and edge devices have propelled this expansion [2,3].
The availability of such amounts of data opened the floor to the
definition of more data-centric research paradigms besides more tradi-
tional compute-centric ones [4]. These changes had a disruptive impact
on scientific research, which is now essentially relying on software
technologies for taming the vast amount of data [5].

Together with new opportunities, Big Data brings forward multiple
challenges that the scientific software community needs to address
aiming to ensure efficient management throughout the entire data
lifecycle [6-8]. For instance, in the Earth Sciences context, which is
the main domain targeted by this work, the volumes of data available
from model simulations and reanalysis are nowadays in the order
of TeraBytes (i.e. output of a single simulation run), to PetaBytes
(i.e. data published large community experiments or historical reanal-
ysis datasets), heading towards ExaBytes in the near future (i.e. data
produced in very high-resolution climate projections) [9-12]. Besides
posing substantial technical challenges connected with the scale of such

Abbreviations: HPDA, High Performance Data Analytics; CMIP, Coupled Model Intercomparison Project

* Corresponding author.

E-mail address: donatello.elia@cmcc.it (Donatello Elia).
1 Present Affiliation: University of Trento, 38122, Trento, Italy.
2 Present Affiliation: ML Engineering Lead, Milan, Italy.

https://doi.org/10.1016/j.s0ftx.2023.101538

Received 4 August 2023; Received in revised form 19 September 2023; Accepted 27 September 2023

Available online 10 October 2023

2352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00522
https://pyophidia.readthedocs.io/en/latest/
mailto:ophidia-info@cmcc.it
mailto:donatello.elia@cmcc.it
https://doi.org/10.1016/j.softx.2023.101538
https://doi.org/10.1016/j.softx.2023.101538
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101538&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Donatello Elia et al.

PyOphidia Library

Cube class

Datacube
processing

Metadata

cube object

Run command/

SoftwareX 24 (2023) 101538

HPC/Cloud Center

Reference to
remote data

Submit execution

workflow remotely

Client class

Ophidia S
Retrieve results S

Fig. 1. Software architecture of the PyOphidia module, highlighting the interaction with the server-side infrastructure.

(big) data, climate datasets also need targeted software solutions able
to deal with domain-specific aspects such as, among others, scientific
data formats, legacy libraries and tools, controlled vocabularies and
metadata management [13].

The aforementioned requirements have led to the development of
the Ophidia Framework® in 2012, [14] and the PyOphidia Python
module a few years later. Ophidia is an open-source framework aimed
at providing High Performance Data Analytics (HPDA) capabilities for
scientific applications involving large-scale multi-dimensional scientific
data [15]. The framework has been primarily designed to address
climate and geosciences needs, although it is flexible enough to support
analysis of data from other scientific domains. The PyOphidia mod-
ule brings HPDA capabilities within the scientific Python ecosystem
through a high-level interface that allows handling distributed datasets,
running parallel analysis and interacting with High Performance Com-
puting (HPC) infrastructures.

The remainder of this paper is organized as follows: Section 2
presents the PyOphidia module, its architecture and capabilities, Sec-
tion 3 showcases a relevant usage example, while Section 4 reports on
the software impact and future work.

2. Software description

PyOphidia represents the Python bindings of the Ophidia frame-
work, and it aims to provide a high-level and programmatic interface
for data analytics at scale, while hiding the complexity of the underly-
ing infrastructure from scientists. It is not just an interface towards the
framework, but a powerful library for handling scientific data in the
form of datacubes, as well as managing workflow execution, enabling
parallel processing on HPC systems, and supporting integration with
well-known modules from the Python scientific ecosystem.

PyOphidia is an open source software, released under GPLv3 li-
cense’ and written entirely in Python, with the current version sup-
porting up to Python v3.11. The source code is available on GitHub,®
whereas the package can be retrieved from the Python Package Index
(i.e., Pypi)® and the Conda Forge channel on Anaconda.” The module
can be easily integrated with other scientific Python libraries such as
those supported by the Pangeo project [16].

2.1. Software architecture

The overall PyOphidia software architecture is explained in Fig. 1.
As it can be seen PyOphidia provides the client-side capabilities, usually
running on the scientist’s laptop, while the Ophidia Framework pro-
vides the server-side counterpart running on HPC or Cloud resources.
The library consists of two main Python classes:

3 Ophidia: https://ophidia.cmcc.it/

4 GNU General Public License v3: https://www.gnu.org/licenses/gpl-3.0.txt
5 PyOphidia at: https://github.com/OphidiaBigData/PyOphidia

¢ PyOphidia on Pypi: https://pypi.org/project/PyOphidia/

7 PyOphidia on Conda Forge: https://anaconda.org/conda-forge/pyophidia

» Client class: it provides the basic functions to submit any command
or workflow using a declarative query-like language offered by
the Ophidia front-end server. This class exploits a custom imple-
mentation of a web service (according to WS-I+ standard [17])
based on gSOAP over HTTPS to perform the client-server inter-
actions. By means of this client-server approach, the client class
allows users to execute data analytics operators or shell com-
mands on remote HPC and Cloud infrastructures. The connection
is secured via SSL/TLS;

Cube class: it implements the abstractions to handle scientific
datasets (i.e., multi-dimensional data) as Python datacube ob-
jects and HPDA operators as Python datacube methods. The
cube objects store the metadata and a reference towards the
actual data managed by the server-side components. Moreover,
the class implements a set of methods for materializing these
virtual datacubes into (client-side) Python objects containing the
whole data (according to the Ophidia data model [18]). The
cube class also provides methods for translating these objects into
common scientific Python formats, such as Xarray Datasets [19]
or Pandas Dataframes [20]. The cube class interface has been
designed to support HPDA tasks and deployment capabilities on
top of HPC infrastructures. This class exploits the client class for
the interaction with remote components, as shown in Fig. 1.

2.2. Data distribution and execution parallelism

The main goal of the PyOphidia library is to support HPDA on large
scientific datasets. To this end, the library provides the capabilities
for handling multi-dimensional data using the datacube abstraction
borrowed from the datawarehouse context, jointly with a set of On-Line
Analytical Processing (OLAP) operators. This abstraction is particularly
suited for scientific data as these are inherently multi-dimensional. The
Ophidia data model (widely discussed in [18]) implements the dat-
acube abstraction and strategies to split and partition data horizontally
into fragments across multiple computing nodes on the server-side. To-
wards enabling scalable analytics, the server-side components provide
parallel access and processing to the distributed fragments composing
a datacube.

From an implementation standpoint, Fig. 2 clarifies the key steps
needed to run a server-side parallel data analysis on a HPC infrastruc-
ture. In particular, the sequence of steps is:

1. Infrastructure deployment: as a first step, PyOphidia implements
the methods for firing up (i.e., deploying) the Ophidia comput-
ing components on the server-side (e.g., the nodes of a HPC
cluster);

2. Data access and loading: PyOphidia provides methods to load
data while specifying also the partitioning and distribution strat-
egy; more specifically: (i) the number of fragments the datacube
is split into and (ii) the number of nodes the fragments are
distributed over;

https://ophidia.cmcc.it/
https://www.gnu.org/licenses/gpl-3.0.txt
https://github.com/OphidiaBigData/PyOphidia
https://pypi.org/project/PyOphidia/
https://anaconda.org/conda-forge/pyophidia

Donatello Elia et al.

Scientist Laptop

1. DEPLOY
COMPUTING
COMPONENTS

SoftwareX 24 (2023) 101538

HPC/Cloud Center

SERVER NODE @

«—

Jupyter Notebook/Python Script

2. LOAD DATASET

VISUALIZE RESULTS

I

t Ophidia J][Ophidia [Ophidia][Ophidia J]
Compute| Compute| Compute| Compute|
Nodes Nodes Nodes, Nodes

HPC COMPUTE NODES

HPC COMPUTE NODES @

Py @y
Datacube Datacube
fragments f

>/

Datacube Datacube

fragments

STORAGE

S:RUN PARALLEL HPC COMPUTE NODES @
OPERATORS ~ -
Threads Threads Threads Threads
@ xN xN XN XN
4. TRANSFER Rk Rk | Rk
REMOTE DATACUBE -\
SERVER NODE @
5. UNDEPLOY
COMPUTING
COMPONENTS

Ophidia Ophidia Ophidia
Compute] Computs Computy
Nodes. Node: Node:

Ophidia
cnmpu;u
Node:
HPC COMPUTE NODES

Fig. 2. Main steps in a HPDA application implemented with PyOphidia for running remote parallel processing on a HPC infrastructure [WITH COLORS].

3. Parallel analytics: the library provides analytics interfaces that
allow defining the level of parallelism (i.e., number of processes
and threads per processes) over the partitioned datacubes;

4. Data transfer and visualization: if needed, data can be transferred
from the server-side running at the HPC center to the client
side for further post-processing and visualization tasks, by using
proper PyOphidia interfaces;

5. Infrastructure un-deployment: similarly to the first step, once the
processing is completed, a method for shutting down (i.e, un-
deploying) the Ophidia computing components on the server-
side, is provided.

The Ophidia Framework provides multiple levels of parallelism: at
datacube-level, i.e., multiple independent instances of the same operator
can be run concurrently on different datacubes (or files to load); and
at fragment level, i.e., a single operator is run in parallel exploiting a
hybrid multi-process/multi-thread approach on the different datacube
fragments. The interface of the parallel operators, and the related
methods in PyOphidia, have been designed to provide a high degree
of flexibility so that users or applications can tailor analytics execution
according to the workload. Fig. 2 shows a simplified view of the server-
side Ophidia Framework architecture; a detailed description can be
found in [15].

2.3. Software functionalities
PyOphidia provides a wide set of functionalities for handling and

processing large multi-dimensional datasets. The key methods imple-
mented by the libraries support:

connecting a remote Ophidia server instance and managing client—
server interactions, including user authentication/authorization
to the server side;

submission of analytics query with the Ophidia query-like lan-
guage, as well as complex workflows in JavaScript Object Nota-
tion (JSON) format (workflow format defined in [21]);

handling virtual multi-dimensional data in the form of datacubes.
To this end, the cube class supports the creation of datacube
objects linked to the remote server-side data. The object includes
a reference to the data via a unique identifier (called persis-
tent identifier - PID), together with all the metadata associated
with the remote datacube, such as the dimension, structure, size,
length of fields, etc.

operations on the data associated with the virtual cube objects.
All these operators allow the user to specify the level of par-
allelism required to run operations remotely on the server-side
infrastructure. The supported operations consist of:

- data loading and storing from scientific binary formats such
as NetCDF [22]. These methods provide the abstractions
for defining the structure of remote datacubes in terms
of partitioning and distribution on the server-side storage
nodes;

- statistical data reduction operations like average, max, min,
standard deviation, etc.;

- data subsetting on multiple dimensions;

— predicate evaluation;

— intercomparison and merging of multiple datacubes;

- execution of user defined functions (called primitives in
Ophidia);

Donatello Elia et al.

operations to handle datacube metadata and reorganize their
internal structure. Moreover, the software supports community-
based vocabularies like the Climate and Forecast Metadata Con-
ventions [23];

server-side interaction with remote HPC systems to (i) deploy and
un-deploy the computing components of the Ophidia Framework,
(i) run the operations on the remote cube objects, and (iii)
execute generic Python functions/scripts on the nodes;
materialization of remote datacubes on the client-side into ac-
tual Python data in the PyOphidia multi-dimensional format.
Moreover, the library provides methods for converting remote ob-
jects into client-side data in well-known scientific Python formats
(i.e., Pandas DataFrames and Xarray Datasets).

3. Illustrative example

This section presents a typical example of how to use PyOphidia for
the parallel computation of a climate indicator on a scientific dataset
and exploiting HPC resources. Additional examples of Python codes
and Jupyter Notebooks [24] based on PyOphidia can be found on the
module documentation page®.

Listing 1 shows how to compute the Tropical Nights extreme climate
indicator [25] with PyOphidia, which is defined as the annual count of
days where the daily minimum temperature is above 20 °C (or 293.15
K). In particular, the first statement (line 2) establishes the connection
towards the server front-end running on the remote HPC infrastructure.
It is noteworthy that all PyOphidia methods, except from line 14,
despite being executed locally, will be submitted to the front-end for
remote execution.

1 from PyOphidia.cube import Cube

> Cube.setclient (read_env=True)

3

4 Cube. cluster (action="deploy",host_partition="
test_partition",nhost=4)

6 myCubel = Cube.importnc(src_path="/tasmin—
ESM2_ssp585_r1ilpl1fl_gn_20900101 —21001231.nc",
measure="tasmin", imp_dim="time", description="Min
Temperatures", host_partition="test_partition",
nthreads=64)

¢ myCube2 = myCubel.apply(query="oph_predicate (measure, ’x
—293.157,’>0",’17,’0")", measure_type="auto",
nthreads=64)

10 myCube3 = myCube2.reduce2(operation="sum", dim="time",
concept_level="y", nthreads=64)

11

12 myCube4 = myCube3. subset(subset_dims="time",
subset_filter=1)

14 pythonData = myCube4.to_dataset ()

15

16 pythonData.tasmin. plot(cmap="Oranges", cbar_kwargs={"
label": "Tropical Nights count"}, figsize=(16,8))

18 Cube. cluster (action="undeploy",host_partition="
test_partition")

Listing 1: Example of Python code exploiting the PyOphidia module
for running the computation of a climate index in parallel over a large
dataset on a HPC infrastructure

Before running the actual analysis, the framework components are
deployed on 4 nodes of the HPC infrastructure (line 4); a similar

8 PyOhidia docs: https://pyophidia.readthedocs.io/en/latest/

SoftwareX 24 (2023) 101538

method can be used to un-deploy the components and release the
resources (line 18). These methods allow controlling the amount of
resources needed for the execution of the analysis without having
to directly log into the remote HPC infrastructure, as described in
Section 2.2.

Analytics operators can be then specified with the related method.
Each method allows the user to specify the overall level of parallelism
for the operator execution: in the case of this example, 64 threads
are used in total (defined through the nthreads argument), so that 16
parallel threads are running on each of the 4 nodes handling a portion
of the datacube fragments (i.e., using the fragment-level parallelism
explained in Section 2.2).

The data loading operator (i.e., importnc method) allows defining
data partitioning and distribution directly while data is read from
the file system: users can define the number of nodes that data is
distributed on (nhost parameter) and how the data is partitioned, by
defining the number of data fragments per node (nfrags parameter).
It is worth noting that users do not need to specify data partitioning
arguments as the framework implements heuristics to automatically
infer fragmentation according to the available resources and input data
structure. In this specific example, a CMCC dataset from the CMIP6
repository [26] containing the minimum daily temperatures is imported
in line 6: the resulting datacube is partitioned on the 4 nodes where
the Ophidia components were previously deployed (i.e., identified by
the test partition name). Since the number of hosts and the number of
fragments are not defined, the heuristics partition the datacube across
all the nodes associated with the test partition.

After the data is loaded on the HPC nodes, three parallel operators
are applied to (i) extract the number of days over the given threshold
293.15 K (line 8), (ii) count the days for each year in the datacube (line
10), and extract the results for the first year (line 12).

Finally, using the to_dataset method (line 14) the datacube content
can be transferred from the server-side infrastructure to the client-side
and converted into an Xarray Dataset. It should be noted that at this
stage the data being moved from the remote server to the notebook
is quite small (less than a MegaByte in this example). The results from
this command can be accessed directly within the Python script, locally,
for further processing and visualization (line 16). Fig. 3 shows a plot
with the result from the Tropical Night indicator produced with the
Xarray built-in plotting functions based on Matplotlib [27]. As it can
be argued, the methods for converting Ophidia datacubes into other
formats enable a seamless integration of PyOphidia HPDA features with
other scientific Python libraries.

4. Impact and conclusions

The PyOphidia module aims to address the challenges related to
the increasing volumes of scientific data by providing a high-level
solution tailored for parallel processing of multi-dimensional data. The
module provides the abstractions for handling data parallelism on
heterogeneous computing environments (both HPC and Cloud), trying
to hide the complexity of the underlying infrastructure, as shown in
Section 3. Extensive documentation, along with examples of usage
and video tutorials/materials, and a Docker container (hosting both
PyOphidia and the Ophidia software stack) targeting in particular
the Earth Science domain, have been made available online to help
scientists take advantage of the package’. Moreover, PyOphidia can be
used in conjunction with other Python modules and tools for interactive
analysis and visualization.

PyOphidia was released to the public in 2016. It has been improved
and supported by multiple developers ever since, and exploited by sev-
eral users throughout the years. The current version (v1.11) comprises

9 PyOphidia tutorials: https://pyophidia.readthedocs.io/en/latest/tutorial.
html

https://pyophidia.readthedocs.io/en/latest/
https://pyophidia.readthedocs.io/en/latest/tutorial.html
https://pyophidia.readthedocs.io/en/latest/tutorial.html

Donatello Elia et al.

SoftwareX 24 (2023) 101538

time = 2090-07-02 12:00:00

Latitude [degrees_north]

350

300

]
S

-]
5

Topical Nights count

&
3

100

0 50 100 150

200

250 300 350

Longitude [degrees_east]

Fig. 3. Color mesh plot showing the results of the Tropical Nights indicator computation. Figure produced using the built-in plotting functions from Xarray/Matplotlib [WITH

COLORS].

more than 5300 lines of codes with over 230 commits on the GitHub
repository.

The Python module has been used, jointly with the Ophidia server-
side components, in a wide set of applications, mainly related to climate
and geosciences [28-30] but also linked with biodiversity and smart
cities [31,32]. Other than being used by scientists on a daily basis, the
module has also been exploited in several applications developed in
the context of international and European projects. In particular, the
module is currently used in the European projects eFlows4HPC [33],
interTwin'® and ESiWACE Center of Excellence,'! and it is one of the
key components of the Data Space science gateway for the European
Network for Earth System Modelling (ENES) community [34].

Overall, the PyOphidia module enables greater productivity of sci-
entists, as they can focus more on the science part rather than the setup
of the system and the interaction with the infrastructure, and it supports
processing of parallel analytics for scientific datasets. PyOphidia capa-
bilities have therefore proven useful for effective knowledge extraction
on Big Data and, in turn, to support scientific discovery. Concerning
future work, the module will undergo continuous developments to
account for new requirements from the scientific community, support
direct integration with other well-known community libraries, and in-
crease the capabilities to handle complex and large workflows including
thousands of tasks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The code is available at: https://github.com/OphidiaBigData/PyOp
hidia
Acknowledgments

The development of PyOphidia has been in part supported by multi-
ple research projects through the years; the full list of projects providing
financial support is provided at: https://github.com/OphidiaBigData/

PyOphidia/blob/master/NOTICE.rst. The most recent projects that
provided support to PyOphidia are eFlows4HPC and ESiWACE2.

10 jnterTwin: https://www.intertwin.eu/
11 ESiWACE: https://www.esiwace.eu/

eFlows4HPC receives funding from the European High-Performance
Computing Joint Undertaking (JU) under grant agreement No. 955558.
The JU receives support from the European Union’s Horizon 2020
research and innovation programme and Spain, Germany, France, Italy,
Poland, Switzerland, and Norway. In Italy, it has been preliminar-
ily approved for complimentary funding by Ministero dello Sviluppo
Economico (MiSE) (ref. project prop. 2659). The ESiWACE2 project
received funding under the European Union’s Horizon 2020 Research
and Innovation Programme under Grant No. 823988. The publication
of this article was funded by the eFlows4HPC project.

The authors would like to thank all the people who contributed
to the development of the module throughout the years. The full
list of contributors is provided at https://github.com/OphidiaBigData/
PyOphidia/blob/master/AUTHORS.rst.

References

[1] Philip Chen C, Zhang C-Y. Data-intensive applications, challenges, techniques
and technologies: A survey on big data. Inform Sci 2014;275:314-47. http:
//dx.doi.org/10.1016/j.ins.2014.01.015.

Overpeck JT, Meehl GA, Bony S, Easterling DR. Climate data challenges in
the 21st century. Science 2011;331(6018):700-2. http://dx.doi.org/10.1126/
science.1197869.

Jagadish HV, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM, Ra-
makrishnan R, et al. Big data and its technical challenges. Commun ACM
2014;57(7):86-94. http://dx.doi.org/10.1145/2611567.

Bell G, Hey T, Szalay A. Beyond the data deluge. Science 2009;323(5919):1297—
8. http://dx.doi.org/10.1126/science.1170411.

Gray J, Liu DT, Nieto-Santisteban M, Szalay A, DeWitt DJ, Heber G. Scientific
data management in the coming decade. SIGMOD Rec 2005;34(4):34-41. http:
//dx.doi.org/10.1145/1107499.1107503.

Marx V. The big challenges of big data. Nature 2013;498(7453):255-60. http:
//dx.doi.org/10.1038/498255a.

Hu H, Wen Y, Chua T, Li X. Toward scalable systems for big data analytics:
A technology tutorial. IEEE Access 2014;2:652-87. http://dx.doi.org/10.1109/
ACCESS.2014.2332453.

Bethel EW, Greenwald M, van Dam KK, Parashar M, Wild SM, Wiley HS.
Management, analysis, and visualization of experimental and observational data
- the convergence of data and computing. In: 2016 IEEE 12th international
conference on e-Science. 2016, p. 213-22. http://dx.doi.org/10.1109/eScience.
2016.7870902.

Deser C, Lehner F, Rodgers K, Ault T, Delworth T, DiNezio P, et al. Insights
from earth system model initial-condition large ensembles and future prospects.
Nature Clim Change 2020;10(4):277-86. http://dx.doi.org/10.1038/s41558-020-
0731-2.

Balaji V, Taylor KE, Juckes M, Lawrence BN, Durack PJ, Lautenschlager M, et
al. Requirements for a global data infrastructure in support of CMIP6. Geosci
Model Dev 2018;11(9):3659-80. http://dx.doi.org/10.5194/gmd-11-3659-2018.
Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi A, Muifioz-Sabater J, et
al. The era5 global reanalysis. Q J R Meteorol Soc 2020;146(730):1999-2049.
http://dx.doi.org/10.1002/qj.3803.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia
https://github.com/OphidiaBigData/PyOphidia/blob/master/NOTICE.rst
https://github.com/OphidiaBigData/PyOphidia/blob/master/NOTICE.rst
https://github.com/OphidiaBigData/PyOphidia/blob/master/NOTICE.rst
https://www.intertwin.eu/
https://www.esiwace.eu/
https://github.com/OphidiaBigData/PyOphidia/blob/master/AUTHORS.rst
https://github.com/OphidiaBigData/PyOphidia/blob/master/AUTHORS.rst
https://github.com/OphidiaBigData/PyOphidia/blob/master/AUTHORS.rst
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1126/science.1197869
http://dx.doi.org/10.1126/science.1197869
http://dx.doi.org/10.1126/science.1197869
http://dx.doi.org/10.1145/2611567
http://dx.doi.org/10.1126/science.1170411
http://dx.doi.org/10.1145/1107499.1107503
http://dx.doi.org/10.1145/1107499.1107503
http://dx.doi.org/10.1145/1107499.1107503
http://dx.doi.org/10.1038/498255a
http://dx.doi.org/10.1038/498255a
http://dx.doi.org/10.1038/498255a
http://dx.doi.org/10.1109/ACCESS.2014.2332453
http://dx.doi.org/10.1109/ACCESS.2014.2332453
http://dx.doi.org/10.1109/ACCESS.2014.2332453
http://dx.doi.org/10.1109/eScience.2016.7870902
http://dx.doi.org/10.1109/eScience.2016.7870902
http://dx.doi.org/10.1109/eScience.2016.7870902
http://dx.doi.org/10.1038/s41558-020-0731-2
http://dx.doi.org/10.1038/s41558-020-0731-2
http://dx.doi.org/10.1038/s41558-020-0731-2
http://dx.doi.org/10.5194/gmd-11-3659-2018
http://dx.doi.org/10.1002/qj.3803

Donatello Elia et al.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Schiar C, Fuhrer O, Arteaga A, Ban N, Charpilloz C, Girolamo SD, et al.
Kilometer-scale climate models: Prospects and challenges. Bull Am Meteorol Soc
2020;101(5):E567-87. http://dx.doi.org/10.1175/BAMS-D-18-0167.1.

Ailamaki A, Kantere V, Dash D. Managing scientific data. Commun ACM
2010;53(6):68-78. http://dx.doi.org/10.1145/1743546.1743568.

Fiore S, D’Anca A, Palazzo C, Foster I, Williams D, Aloisio G. Ophidia:
Toward big data analytics for escience. Procedia Comput Sci 2013;18:2376-85.
http://dx.doi.org/10.1016/j.procs.2013.05.409, 2013 International Conference
on Computational Science.

Elia D, Fiore S, Aloisio G. Towards HPC and big data analytics convergence: De-
sign and experimental evaluation of a hpda framework for escience at scale. IEEE
Access 2021;9:73307-26. http://dx.doi.org/10.1109/ACCESS.2021.3079139.
Hamman J, Rocklin M, Abernathy R. Pangeo: A big-data ecosystem for scalable
earth system science. In: EGU General Assembly conference abstracts. 2018, p.
12146, URL https://ui.adsabs.harvard.edu/abs/2018EGUGA.2012146H.
Chumbley R, Durand J, Hainline M, Pilz G, Rutt T. Basic profile version 1.2.
Web Service Interoperability Organization; 2010, URL http://ws-i.org/Profiles/
BasicProfile-1.2-2010-11-09.html.

Fiore S, Elia D, Palazzo C, Antonio F, D’Anca A, Foster I, et al. Towards high
performance data analytics for climate change. In: Weiland M, Juckeland G,
Alam S, Jagode H, editors. High performance computing. Cham, Switzerland:
Springer Nature Switzerland AG; 2019, p. 240-57. http://dx.doi.org/10.1007/
978-3-030-34356-9_20.

Hoyer S, Hamman J. xarray: N-D labeled arrays and datasets in Python. J Open
Res Softw 2017;5(1). http://dx.doi.org/10.5334/jors.148.

McKinney Wes. Data structures for statistical computing in python. In: van der
Walt Stéfan, Millman Jarrod, editors. Proceedings of the 9th Python in science
conference. 2010, p. 56-61. http://dx.doi.org/10.25080/Majora-92bf1922-00a.
Palazzo C, Mariello A, Fiore S, D’Anca A, Elia D, Williams DN, et al. A workflow-
enabled big data analytics software stack for escience. In: 2015 international
conference on high performance computing & simulation. 2015, p. 545-52.
http://dx.doi.org/10.1109/HPCSim.2015.7237088.

Rew R, Davis G. NetCDF: an interface for scientific data access. IEEE Comput
Graph Appl 1990;10(4):76-82. http://dx.doi.org/10.1109/38.56302.

Gregory J. The CF metadata standard. In: CLIVAR exchanges, vol. 8, no. 4. 2003,
p. 4.

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, et
al. Jupyter notebooks — a publishing format for reproducible computational
workflows. In: F. Loizides B Schmidt, editor. Positioning and power in academic
publishing: Players, agents and agendas. IOS Press; 2016, p. 87-90. http://dx.
doi.org/10.3233/978-1-61499-649-1-87.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

SoftwareX 24 (2023) 101538

Klein Tank A, Zwiers F, Zhang X. Guidelines on analysis of extremes in a
changing climate in support of informed decisions for adaptation. Tech. rep.
WCDMP No. 72. WMO-TD No. 1500, World Meteorological Organization; 2009.
Scoccimarro E, Bellucci A, Peano D. Cmcc cmce-cm2-vhr4 model output prepared
for cmip6 highresmip. 2017, http://dx.doi.org/10.22033/ESGF/CMIP6.1367.
Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng
2007;9(3):90-5. http://dx.doi.org/10.1109/MCSE.2007.55.

Fiore S, Pt6ciennik M, Doutriaux C, Palazzo C, Boutte J, Zok T, et al. Distributed
and cloud-based multi-model analytics experiments on large volumes of climate
change data in the earth system grid federation eco-system. In: 2016 IEEE
international conference on big data. 2016, p. 2911-8. http://dx.doi.org/10.
1109/BigData.2016.7840941.

D’Anca A, Palazzo C, Elia D, Fiore S, Bistinas I, Bottcher K, et al. On the use of in-
memory analytics workflows to compute eScience indicators from large climate
datasets. In: 2017 17th IEEE/ACM international symposium on cluster, cloud and
grid computing. 2017, p. 1035-43. http://dx.doi.org/10.1109/CCGRID.2017.132.
Fiore S, Elia D, Palazzo C, D’Anca A, Antonio F, Williams DN, et al. Towards an
open (data) science analytics-hub for reproducible multi-model climate analysis
at scale. In: 2018 IEEE international conference on big data. 2018, p. 3226-34.
http://dx.doi.org/10.1109/BigData.2018.8622205.

Fiore S, Palazzo C, D’Anca A, Elia D, Londero E, Knapic C, et al. Big data
analytics on large-scale scientific datasets in the INDIGO-DataCloud project.
In: Proceedings of the computing frontiers conference. 2017, p. 343-8. http:
//dx.doi.org/10.1145/3075564.3078884.

Fiore S, Elia D, Pires CE, Mestre DG, Cappiello C, Vitali M, et al. An integrated
big and fast data analytics platform for smart urban transportation manage-
ment. IEEE Access 2019;7:117652-77. http://dx.doi.org/10.1109/ACCESS.2019.
2936941.

Ejarque J, Badia RM, Albertin L, Aloisio G, Baglione E, Becerra Y, et al. Enabling
dynamic and intelligent workflows for hpc, data analytics, and ai convergence.
Future Gener Comput Syst 2022;134:414-29. http://dx.doi.org/10.1016/j.future.
2022.04.014.

Elia D, Antonio F, Fiore S, Nassisi P, Aloisio G. A data space for climate
science in the European open science cloud. Comput Sci Eng 2023;(01):1-10.
http://dx.doi.org/10.1109/MCSE.2023.3274047.

http://dx.doi.org/10.1175/BAMS-D-18-0167.1
http://dx.doi.org/10.1145/1743546.1743568
http://dx.doi.org/10.1016/j.procs.2013.05.409
http://dx.doi.org/10.1109/ACCESS.2021.3079139
https://ui.adsabs.harvard.edu/abs/2018EGUGA.2012146H
http://ws-i.org/Profiles/BasicProfile-1.2-2010-11-09.html
http://ws-i.org/Profiles/BasicProfile-1.2-2010-11-09.html
http://ws-i.org/Profiles/BasicProfile-1.2-2010-11-09.html
http://dx.doi.org/10.1007/978-3-030-34356-9_20
http://dx.doi.org/10.1007/978-3-030-34356-9_20
http://dx.doi.org/10.1007/978-3-030-34356-9_20
http://dx.doi.org/10.5334/jors.148
http://dx.doi.org/10.25080/Majora-92bf1922-00a
http://dx.doi.org/10.1109/HPCSim.2015.7237088
http://dx.doi.org/10.1109/38.56302
http://refhub.elsevier.com/S2352-7110(23)00234-0/sb23
http://refhub.elsevier.com/S2352-7110(23)00234-0/sb23
http://refhub.elsevier.com/S2352-7110(23)00234-0/sb23
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://refhub.elsevier.com/S2352-7110(23)00234-0/sb25
http://refhub.elsevier.com/S2352-7110(23)00234-0/sb25
http://refhub.elsevier.com/S2352-7110(23)00234-0/sb25
http://refhub.elsevier.com/S2352-7110(23)00234-0/sb25
http://refhub.elsevier.com/S2352-7110(23)00234-0/sb25
http://dx.doi.org/10.22033/ESGF/CMIP6.1367
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/BigData.2016.7840941
http://dx.doi.org/10.1109/BigData.2016.7840941
http://dx.doi.org/10.1109/BigData.2016.7840941
http://dx.doi.org/10.1109/CCGRID.2017.132
http://dx.doi.org/10.1109/BigData.2018.8622205
http://dx.doi.org/10.1145/3075564.3078884
http://dx.doi.org/10.1145/3075564.3078884
http://dx.doi.org/10.1145/3075564.3078884
http://dx.doi.org/10.1109/ACCESS.2019.2936941
http://dx.doi.org/10.1109/ACCESS.2019.2936941
http://dx.doi.org/10.1109/ACCESS.2019.2936941
http://dx.doi.org/10.1016/j.future.2022.04.014
http://dx.doi.org/10.1016/j.future.2022.04.014
http://dx.doi.org/10.1016/j.future.2022.04.014
http://dx.doi.org/10.1109/MCSE.2023.3274047

	PyOphidia: A Python library for High Performance Data Analytics at scale
	Motivation and significance
	Software Description
	Software architecture
	Data distribution and execution parallelism
	Software functionalities

	Illustrative example
	Impact and conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

